#ifndef ENTT_ENTITY_GROUP_HPP #define ENTT_ENTITY_GROUP_HPP #include <tuple> #include <type_traits> #include <utility> #include "../config/config.h" #include "../core/iterator.hpp" #include "../core/type_traits.hpp" #include "component.hpp" #include "entity.hpp" #include "fwd.hpp" #include "sparse_set.hpp" #include "storage.hpp" namespace entt { /** * @cond TURN_OFF_DOXYGEN * Internal details not to be documented. */ namespace internal { template<typename, typename, typename> class extended_group_iterator; template<typename It, typename... Owned, typename... Get> class extended_group_iterator<It, owned_t<Owned...>, get_t<Get...>> { template<typename Type> auto index_to_element(Type &cpool) const { if constexpr(ignore_as_empty_v<typename Type::value_type>) { return std::make_tuple(); } else { return std::forward_as_tuple(cpool.rbegin()[it.index()]); } } public: using difference_type = std::ptrdiff_t; using value_type = decltype(std::tuple_cat(std::make_tuple(*std::declval<It>()), std::declval<Owned>().get_as_tuple({})..., std::declval<Get>().get_as_tuple({})...)); using pointer = input_iterator_pointer<value_type>; using reference = value_type; using iterator_category = std::input_iterator_tag; constexpr extended_group_iterator() : it{}, pools{} {} extended_group_iterator(It from, const std::tuple<Owned *..., Get *...> &cpools) : it{from}, pools{cpools} {} extended_group_iterator &operator++() noexcept { return ++it, *this; } extended_group_iterator operator++(int) noexcept { extended_group_iterator orig = *this; return ++(*this), orig; } [[nodiscard]] reference operator*() const noexcept { return std::tuple_cat(std::make_tuple(*it), index_to_element(*std::get<Owned *>(pools))..., std::get<Get *>(pools)->get_as_tuple(*it)...); } [[nodiscard]] pointer operator->() const noexcept { return operator*(); } template<typename... Lhs, typename... Rhs> friend constexpr bool operator==(const extended_group_iterator<Lhs...> &, const extended_group_iterator<Rhs...> &) noexcept; private: It it; std::tuple<Owned *..., Get *...> pools; }; template<typename... Lhs, typename... Rhs> [[nodiscard]] constexpr bool operator==(const extended_group_iterator<Lhs...> &lhs, const extended_group_iterator<Rhs...> &rhs) noexcept { return lhs.it == rhs.it; } template<typename... Lhs, typename... Rhs> [[nodiscard]] constexpr bool operator!=(const extended_group_iterator<Lhs...> &lhs, const extended_group_iterator<Rhs...> &rhs) noexcept { return !(lhs == rhs); } } // namespace internal /** * Internal details not to be documented. * @endcond */ /** * @brief Group. * * Primary template isn't defined on purpose. All the specializations give a * compile-time error, but for a few reasonable cases. */ template<typename, typename, typename> class basic_group; /** * @brief Non-owning group. * * A non-owning group returns all entities and only the entities that are at * least in the given storage. Moreover, it's guaranteed that the entity list is * tightly packed in memory for fast iterations. * * @b Important * * Iterators aren't invalidated if: * * * New elements are added to the storage. * * The entity currently pointed is modified (for example, components are added * or removed from it). * * The entity currently pointed is destroyed. * * In all other cases, modifying the pools iterated by the group in any way * invalidates all the iterators and using them results in undefined behavior. * * @tparam Get Types of storage _observed_ by the group. * @tparam Exclude Types of storage used to filter the group. */ template<typename... Get, typename... Exclude> class basic_group<owned_t<>, get_t<Get...>, exclude_t<Exclude...>> { using underlying_type = std::common_type_t<typename Get::entity_type..., typename Exclude::entity_type...>; using basic_common_type = std::common_type_t<typename Get::base_type..., typename Exclude::base_type...>; template<typename Type> static constexpr std::size_t index_of = type_list_index_v<std::remove_const_t<Type>, type_list<typename Get::value_type...>>; public: /*! @brief Underlying entity identifier. */ using entity_type = underlying_type; /*! @brief Unsigned integer type. */ using size_type = std::size_t; /*! @brief Common type among all storage types. */ using base_type = basic_common_type; /*! @brief Random access iterator type. */ using iterator = typename base_type::iterator; /*! @brief Reversed iterator type. */ using reverse_iterator = typename base_type::reverse_iterator; /*! @brief Iterable group type. */ using iterable = iterable_adaptor<internal::extended_group_iterator<iterator, owned_t<>, get_t<Get...>>>; /*! @brief Default constructor to use to create empty, invalid groups. */ basic_group() noexcept : handler{} {} /** * @brief Constructs a group from a set of storage classes. * @param ref The actual entities to iterate. * @param gpool Storage types to iterate _observed_ by the group. */ basic_group(basic_common_type &ref, Get &...gpool) noexcept : handler{&ref}, pools{&gpool...} {} /** * @brief Returns a const reference to the underlying handler. * @return A const reference to the underlying handler. */ [[nodiscard]] const base_type &handle() const noexcept { return *handler; } /** * @brief Returns the storage for a given component type. * @tparam Type Type of component of which to return the storage. * @return The storage for the given component type. */ template<typename Type> [[nodiscard]] decltype(auto) storage() const noexcept { return storage<index_of<Type>>(); } /** * @brief Returns the storage for a given index. * @tparam Index Index of the storage to return. * @return The storage for the given index. */ template<std::size_t Index> [[nodiscard]] decltype(auto) storage() const noexcept { return *std::get<Index>(pools); } /** * @brief Returns the number of entities that are part of the group. * @return Number of entities that are part of the group. */ [[nodiscard]] size_type size() const noexcept { return *this ? handler->size() : size_type{}; } /** * @brief Returns the number of elements that a group has currently * allocated space for. * @return Capacity of the group. */ [[nodiscard]] size_type capacity() const noexcept { return *this ? handler->capacity() : size_type{}; } /*! @brief Requests the removal of unused capacity. */ void shrink_to_fit() { if(*this) { handler->shrink_to_fit(); } } /** * @brief Checks whether a group is empty. * @return True if the group is empty, false otherwise. */ [[nodiscard]] bool empty() const noexcept { return !*this || handler->empty(); } /** * @brief Returns an iterator to the first entity of the group. * * The returned iterator points to the first entity of the group. If the * group is empty, the returned iterator will be equal to `end()`. * * @return An iterator to the first entity of the group. */ [[nodiscard]] iterator begin() const noexcept { return *this ? handler->begin() : iterator{}; } /** * @brief Returns an iterator that is past the last entity of the group. * * The returned iterator points to the entity following the last entity of * the group. Attempting to dereference the returned iterator results in * undefined behavior. * * @return An iterator to the entity following the last entity of the * group. */ [[nodiscard]] iterator end() const noexcept { return *this ? handler->end() : iterator{}; } /** * @brief Returns an iterator to the first entity of the reversed group. * * The returned iterator points to the first entity of the reversed group. * If the group is empty, the returned iterator will be equal to `rend()`. * * @return An iterator to the first entity of the reversed group. */ [[nodiscard]] reverse_iterator rbegin() const noexcept { return *this ? handler->rbegin() : reverse_iterator{}; } /** * @brief Returns an iterator that is past the last entity of the reversed * group. * * The returned iterator points to the entity following the last entity of * the reversed group. Attempting to dereference the returned iterator * results in undefined behavior. * * @return An iterator to the entity following the last entity of the * reversed group. */ [[nodiscard]] reverse_iterator rend() const noexcept { return *this ? handler->rend() : reverse_iterator{}; } /** * @brief Returns the first entity of the group, if any. * @return The first entity of the group if one exists, the null entity * otherwise. */ [[nodiscard]] entity_type front() const noexcept { const auto it = begin(); return it != end() ? *it : null; } /** * @brief Returns the last entity of the group, if any. * @return The last entity of the group if one exists, the null entity * otherwise. */ [[nodiscard]] entity_type back() const noexcept { const auto it = rbegin(); return it != rend() ? *it : null; } /** * @brief Finds an entity. * @param entt A valid identifier. * @return An iterator to the given entity if it's found, past the end * iterator otherwise. */ [[nodiscard]] iterator find(const entity_type entt) const noexcept { const auto it = *this ? handler->find(entt) : iterator{}; return it != end() && *it == entt ? it : end(); } /** * @brief Returns the identifier that occupies the given position. * @param pos Position of the element to return. * @return The identifier that occupies the given position. */ [[nodiscard]] entity_type operator[](const size_type pos) const { return begin()[pos]; } /** * @brief Checks if a group is properly initialized. * @return True if the group is properly initialized, false otherwise. */ [[nodiscard]] explicit operator bool() const noexcept { return handler != nullptr; } /** * @brief Checks if a group contains an entity. * @param entt A valid identifier. * @return True if the group contains the given entity, false otherwise. */ [[nodiscard]] bool contains(const entity_type entt) const noexcept { return *this && handler->contains(entt); } /** * @brief Returns the components assigned to the given entity. * * Prefer this function instead of `registry::get` during iterations. It has * far better performance than its counterpart. * * @warning * Attempting to use an invalid component type results in a compilation * error. Attempting to use an entity that doesn't belong to the group * results in undefined behavior. * * @tparam Type Types of components to get. * @param entt A valid identifier. * @return The components assigned to the entity. */ template<typename... Type> [[nodiscard]] decltype(auto) get(const entity_type entt) const { if constexpr(sizeof...(Type) == 0) { return std::apply([entt](auto *...curr) { return std::tuple_cat(curr->get_as_tuple(entt)...); }, pools); } else if constexpr(sizeof...(Type) == 1) { return (std::get<index_of<Type>>(pools)->get(entt), ...); } else { return std::tuple_cat(std::get<index_of<Type>>(pools)->get_as_tuple(entt)...); } } /** * @brief Iterates entities and components and applies the given function * object to them. * * The function object is invoked for each entity. It is provided with the * entity itself and a set of references to non-empty components. The * _constness_ of the components is as requested.<br/> * The signature of the function must be equivalent to one of the following * forms: * * @code{.cpp} * void(const entity_type, Type &...); * void(Type &...); * @endcode * * @note * Empty types aren't explicitly instantiated and therefore they are never * returned during iterations. * * @tparam Func Type of the function object to invoke. * @param func A valid function object. */ template<typename Func> void each(Func func) const { for(const auto entt: *this) { if constexpr(is_applicable_v<Func, decltype(std::tuple_cat(std::tuple<entity_type>{}, std::declval<basic_group>().get({})))>) { std::apply(func, std::tuple_cat(std::make_tuple(entt), get(entt))); } else { std::apply(func, get(entt)); } } } /** * @brief Returns an iterable object to use to _visit_ a group. * * The iterable object returns tuples that contain the current entity and a * set of references to its non-empty components. The _constness_ of the * components is as requested. * * @note * Empty types aren't explicitly instantiated and therefore they are never * returned during iterations. * * @return An iterable object to use to _visit_ the group. */ [[nodiscard]] iterable each() const noexcept { return iterable{{begin(), pools}, {end(), pools}}; } /** * @brief Sort a group according to the given comparison function. * * Sort the group so that iterating it with a couple of iterators returns * entities and components in the expected order. See `begin` and `end` for * more details. * * The comparison function object must return `true` if the first element * is _less_ than the second one, `false` otherwise. The signature of the * comparison function should be equivalent to one of the following: * * @code{.cpp} * bool(std::tuple<Type &...>, std::tuple<Type &...>); * bool(const Type &..., const Type &...); * bool(const Entity, const Entity); * @endcode * * Where `Type` are such that they are iterated by the group.<br/> * Moreover, the comparison function object shall induce a * _strict weak ordering_ on the values. * * The sort function object must offer a member function template * `operator()` that accepts three arguments: * * * An iterator to the first element of the range to sort. * * An iterator past the last element of the range to sort. * * A comparison function to use to compare the elements. * * @tparam Type Optional types of components to compare. * @tparam Compare Type of comparison function object. * @tparam Sort Type of sort function object. * @tparam Args Types of arguments to forward to the sort function object. * @param compare A valid comparison function object. * @param algo A valid sort function object. * @param args Arguments to forward to the sort function object, if any. */ template<typename... Type, typename Compare, typename Sort = std_sort, typename... Args> void sort(Compare compare, Sort algo = Sort{}, Args &&...args) { if(*this) { if constexpr(sizeof...(Type) == 0) { static_assert(std::is_invocable_v<Compare, const entity_type, const entity_type>, "Invalid comparison function"); handler->sort(std::move(compare), std::move(algo), std::forward<Args>(args)...); } else { auto comp = [this, &compare](const entity_type lhs, const entity_type rhs) { if constexpr(sizeof...(Type) == 1) { return compare((std::get<index_of<Type>>(pools)->get(lhs), ...), (std::get<index_of<Type>>(pools)->get(rhs), ...)); } else { return compare(std::forward_as_tuple(std::get<index_of<Type>>(pools)->get(lhs)...), std::forward_as_tuple(std::get<index_of<Type>>(pools)->get(rhs)...)); } }; handler->sort(std::move(comp), std::move(algo), std::forward<Args>(args)...); } } } /** * @brief Sort the shared pool of entities according to the given component. * * Non-owning groups of the same type share with the registry a pool of * entities with its own order that doesn't depend on the order of any pool * of components. Users can order the underlying data structure so that it * respects the order of the pool of the given component. * * @note * The shared pool of entities and thus its order is affected by the changes * to each and every pool that it tracks. Therefore changes to those pools * can quickly ruin the order imposed to the pool of entities shared between * the non-owning groups. * * @tparam Type Type of component to use to impose the order. */ template<typename Type> void sort() const { if(*this) { handler->respect(*std::get<index_of<Type>>(pools)); } } private: base_type *const handler; const std::tuple<Get *...> pools; }; /** * @brief Owning group. * * Owning groups returns all entities and only the entities that are at * least in the given storage. Moreover: * * * It's guaranteed that the entity list is tightly packed in memory for fast * iterations. * * It's guaranteed that all components in the owned storage are tightly packed * in memory for even faster iterations and to allow direct access. * * They stay true to the order of the owned storage and all instances have the * same order in memory. * * The more types of storage are owned, the faster it is to iterate a group. * * @b Important * * Iterators aren't invalidated if: * * * New elements are added to the storage. * * The entity currently pointed is modified (for example, components are added * or removed from it). * * The entity currently pointed is destroyed. * * In all other cases, modifying the pools iterated by the group in any way * invalidates all the iterators and using them results in undefined behavior. * * @tparam Owned Types of storage _owned_ by the group. * @tparam Get Types of storage _observed_ by the group. * @tparam Exclude Types of storage used to filter the group. */ template<typename... Owned, typename... Get, typename... Exclude> class basic_group<owned_t<Owned...>, get_t<Get...>, exclude_t<Exclude...>> { using underlying_type = std::common_type_t<typename Owned::entity_type..., typename Get::entity_type..., typename Exclude::entity_type...>; using basic_common_type = std::common_type_t<typename Owned::base_type..., typename Get::base_type..., typename Exclude::base_type...>; template<typename Type> static constexpr std::size_t index_of = type_list_index_v<std::remove_const_t<Type>, type_list<typename Owned::value_type..., typename Get::value_type...>>; public: /*! @brief Underlying entity identifier. */ using entity_type = underlying_type; /*! @brief Unsigned integer type. */ using size_type = std::size_t; /*! @brief Common type among all storage types. */ using base_type = basic_common_type; /*! @brief Random access iterator type. */ using iterator = typename base_type::iterator; /*! @brief Reversed iterator type. */ using reverse_iterator = typename base_type::reverse_iterator; /*! @brief Iterable group type. */ using iterable = iterable_adaptor<internal::extended_group_iterator<iterator, owned_t<Owned...>, get_t<Get...>>>; /*! @brief Default constructor to use to create empty, invalid groups. */ basic_group() noexcept : length{} {} /** * @brief Constructs a group from a set of storage classes. * @param extent The actual number of entities to iterate. * @param opool Storage types to iterate _owned_ by the group. * @param gpool Storage types to iterate _observed_ by the group. */ basic_group(const std::size_t &extent, Owned &...opool, Get &...gpool) noexcept : pools{&opool..., &gpool...}, length{&extent} {} /** * @brief Returns the storage for a given component type. * @tparam Type Type of component of which to return the storage. * @return The storage for the given component type. */ template<typename Type> [[nodiscard]] decltype(auto) storage() const noexcept { return storage<index_of<Type>>(); } /** * @brief Returns the storage for a given index. * @tparam Index Index of the storage to return. * @return The storage for the given index. */ template<std::size_t Index> [[nodiscard]] decltype(auto) storage() const noexcept { return *std::get<Index>(pools); } /** * @brief Returns the number of entities that that are part of the group. * @return Number of entities that that are part of the group. */ [[nodiscard]] size_type size() const noexcept { return *this ? *length : size_type{}; } /** * @brief Checks whether a group is empty. * @return True if the group is empty, false otherwise. */ [[nodiscard]] bool empty() const noexcept { return !*this || !*length; } /** * @brief Returns an iterator to the first entity of the group. * * The returned iterator points to the first entity of the group. If the * group is empty, the returned iterator will be equal to `end()`. * * @return An iterator to the first entity of the group. */ [[nodiscard]] iterator begin() const noexcept { return *this ? (std::get<0>(pools)->base_type::end() - *length) : iterator{}; } /** * @brief Returns an iterator that is past the last entity of the group. * * The returned iterator points to the entity following the last entity of * the group. Attempting to dereference the returned iterator results in * undefined behavior. * * @return An iterator to the entity following the last entity of the * group. */ [[nodiscard]] iterator end() const noexcept { return *this ? std::get<0>(pools)->base_type::end() : iterator{}; } /** * @brief Returns an iterator to the first entity of the reversed group. * * The returned iterator points to the first entity of the reversed group. * If the group is empty, the returned iterator will be equal to `rend()`. * * @return An iterator to the first entity of the reversed group. */ [[nodiscard]] reverse_iterator rbegin() const noexcept { return *this ? std::get<0>(pools)->base_type::rbegin() : reverse_iterator{}; } /** * @brief Returns an iterator that is past the last entity of the reversed * group. * * The returned iterator points to the entity following the last entity of * the reversed group. Attempting to dereference the returned iterator * results in undefined behavior. * * @return An iterator to the entity following the last entity of the * reversed group. */ [[nodiscard]] reverse_iterator rend() const noexcept { return *this ? (std::get<0>(pools)->base_type::rbegin() + *length) : reverse_iterator{}; } /** * @brief Returns the first entity of the group, if any. * @return The first entity of the group if one exists, the null entity * otherwise. */ [[nodiscard]] entity_type front() const noexcept { const auto it = begin(); return it != end() ? *it : null; } /** * @brief Returns the last entity of the group, if any. * @return The last entity of the group if one exists, the null entity * otherwise. */ [[nodiscard]] entity_type back() const noexcept { const auto it = rbegin(); return it != rend() ? *it : null; } /** * @brief Finds an entity. * @param entt A valid identifier. * @return An iterator to the given entity if it's found, past the end * iterator otherwise. */ [[nodiscard]] iterator find(const entity_type entt) const noexcept { const auto it = *this ? std::get<0>(pools)->find(entt) : iterator{}; return it != end() && it >= begin() && *it == entt ? it : end(); } /** * @brief Returns the identifier that occupies the given position. * @param pos Position of the element to return. * @return The identifier that occupies the given position. */ [[nodiscard]] entity_type operator[](const size_type pos) const { return begin()[pos]; } /** * @brief Checks if a group is properly initialized. * @return True if the group is properly initialized, false otherwise. */ [[nodiscard]] explicit operator bool() const noexcept { return length != nullptr; } /** * @brief Checks if a group contains an entity. * @param entt A valid identifier. * @return True if the group contains the given entity, false otherwise. */ [[nodiscard]] bool contains(const entity_type entt) const noexcept { return *this && std::get<0>(pools)->contains(entt) && (std::get<0>(pools)->index(entt) < (*length)); } /** * @brief Returns the components assigned to the given entity. * * Prefer this function instead of `registry::get` during iterations. It has * far better performance than its counterpart. * * @warning * Attempting to use an invalid component type results in a compilation * error. Attempting to use an entity that doesn't belong to the group * results in undefined behavior. * * @tparam Type Types of components to get. * @param entt A valid identifier. * @return The components assigned to the entity. */ template<typename... Type> [[nodiscard]] decltype(auto) get(const entity_type entt) const { if constexpr(sizeof...(Type) == 0) { return std::apply([entt](auto *...curr) { return std::tuple_cat(curr->get_as_tuple(entt)...); }, pools); } else if constexpr(sizeof...(Type) == 1) { return (std::get<index_of<Type>>(pools)->get(entt), ...); } else { return std::tuple_cat(std::get<index_of<Type>>(pools)->get_as_tuple(entt)...); } } /** * @brief Iterates entities and components and applies the given function * object to them. * * The function object is invoked for each entity. It is provided with the * entity itself and a set of references to non-empty components. The * _constness_ of the components is as requested.<br/> * The signature of the function must be equivalent to one of the following * forms: * * @code{.cpp} * void(const entity_type, Type &...); * void(Type &...); * @endcode * * @note * Empty types aren't explicitly instantiated and therefore they are never * returned during iterations. * * @tparam Func Type of the function object to invoke. * @param func A valid function object. */ template<typename Func> void each(Func func) const { for(auto args: each()) { if constexpr(is_applicable_v<Func, decltype(std::tuple_cat(std::tuple<entity_type>{}, std::declval<basic_group>().get({})))>) { std::apply(func, args); } else { std::apply([&func](auto, auto &&...less) { func(std::forward<decltype(less)>(less)...); }, args); } } } /** * @brief Returns an iterable object to use to _visit_ a group. * * The iterable object returns tuples that contain the current entity and a * set of references to its non-empty components. The _constness_ of the * components is as requested. * * @note * Empty types aren't explicitly instantiated and therefore they are never * returned during iterations. * * @return An iterable object to use to _visit_ the group. */ [[nodiscard]] iterable each() const noexcept { return {{begin(), pools}, {end(), pools}}; } /** * @brief Sort a group according to the given comparison function. * * Sort the group so that iterating it with a couple of iterators returns * entities and components in the expected order. See `begin` and `end` for * more details. * * The comparison function object must return `true` if the first element * is _less_ than the second one, `false` otherwise. The signature of the * comparison function should be equivalent to one of the following: * * @code{.cpp} * bool(std::tuple<Type &...>, std::tuple<Type &...>); * bool(const Type &, const Type &); * bool(const Entity, const Entity); * @endcode * * Where `Type` are either owned types or not but still such that they are * iterated by the group.<br/> * Moreover, the comparison function object shall induce a * _strict weak ordering_ on the values. * * The sort function object must offer a member function template * `operator()` that accepts three arguments: * * * An iterator to the first element of the range to sort. * * An iterator past the last element of the range to sort. * * A comparison function to use to compare the elements. * * @tparam Type Optional types of components to compare. * @tparam Compare Type of comparison function object. * @tparam Sort Type of sort function object. * @tparam Args Types of arguments to forward to the sort function object. * @param compare A valid comparison function object. * @param algo A valid sort function object. * @param args Arguments to forward to the sort function object, if any. */ template<typename... Type, typename Compare, typename Sort = std_sort, typename... Args> void sort(Compare compare, Sort algo = Sort{}, Args &&...args) const { if constexpr(sizeof...(Type) == 0) { static_assert(std::is_invocable_v<Compare, const entity_type, const entity_type>, "Invalid comparison function"); std::get<0>(pools)->sort_n(*length, std::move(compare), std::move(algo), std::forward<Args>(args)...); } else { auto comp = [this, &compare](const entity_type lhs, const entity_type rhs) { if constexpr(sizeof...(Type) == 1) { return compare((std::get<index_of<Type>>(pools)->get(lhs), ...), (std::get<index_of<Type>>(pools)->get(rhs), ...)); } else { return compare(std::forward_as_tuple(std::get<index_of<Type>>(pools)->get(lhs)...), std::forward_as_tuple(std::get<index_of<Type>>(pools)->get(rhs)...)); } }; std::get<0>(pools)->sort_n(*length, std::move(comp), std::move(algo), std::forward<Args>(args)...); } std::apply([this](auto *head, auto *...other) { for(auto next = *length; next; --next) { const auto pos = next - 1; [[maybe_unused]] const auto entt = head->data()[pos]; (other->swap_elements(other->data()[pos], entt), ...); } }, pools); } private: const std::tuple<Owned *..., Get *...> pools; const size_type *const length; }; } // namespace entt #endif