LiteLoaderBDS-1.16.40/LiteLoader/Header/third-party/entt/meta/factory.hpp
2022-09-21 19:47:03 +08:00

598 lines
21 KiB
C++

#ifndef ENTT_META_FACTORY_HPP
#define ENTT_META_FACTORY_HPP
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
#include "../config/config.h"
#include "../core/fwd.hpp"
#include "../core/type_info.hpp"
#include "../core/type_traits.hpp"
#include "meta.hpp"
#include "node.hpp"
#include "policy.hpp"
#include "utility.hpp"
namespace entt {
/**
* @cond TURN_OFF_DOXYGEN
* Internal details not to be documented.
*/
namespace internal {
template<typename Node>
[[nodiscard]] bool find_if(const Node *candidate, const Node *node) ENTT_NOEXCEPT {
return node && (node == candidate || find_if(candidate, node->next));
}
template<typename Id, typename Node>
[[nodiscard]] bool find_if_not(const Id id, Node *node, const Node *owner) ENTT_NOEXCEPT {
if constexpr(std::is_pointer_v<Id>) {
return node && ((*node->id == *id && node != owner) || find_if_not(id, node->next, owner));
} else {
return node && ((node->id == id && node != owner) || find_if_not(id, node->next, owner));
}
}
}
/**
* Internal details not to be documented.
* @endcond
*/
/**
* @brief Meta factory to be used for reflection purposes.
*
* The meta factory is an utility class used to reflect types, data members and
* functions of all sorts. This class ensures that the underlying web of types
* is built correctly and performs some checks in debug mode to ensure that
* there are no subtle errors at runtime.
*/
template<typename...>
struct meta_factory;
/**
* @brief Extended meta factory to be used for reflection purposes.
* @tparam Type Reflected type for which the factory was created.
* @tparam Spec Property specialization pack used to disambiguate overloads.
*/
template<typename Type, typename... Spec>
struct meta_factory<Type, Spec...>: public meta_factory<Type> {
private:
template<std::size_t Step = 0, std::size_t... Index, typename... Property, typename... Other>
void unpack(std::index_sequence<Index...>, std::tuple<Property...> property, Other &&... other) {
unroll<Step>(choice<3>, std::move(std::get<Index>(property))..., std::forward<Other>(other)...);
}
template<std::size_t Step = 0, typename... Property, typename... Other>
void unroll(choice_t<3>, std::tuple<Property...> property, Other &&... other) {
unpack<Step>(std::index_sequence_for<Property...>{}, std::move(property), std::forward<Other>(other)...);
}
template<std::size_t Step = 0, typename... Property, typename... Other>
void unroll(choice_t<2>, std::pair<Property...> property, Other &&... other) {
assign<Step>(std::move(property.first), std::move(property.second));
unroll<Step+1>(choice<3>, std::forward<Other>(other)...);
}
template<std::size_t Step = 0, typename Property, typename... Other>
std::enable_if_t<!std::is_invocable_v<Property>>
unroll(choice_t<1>, Property &&property, Other &&... other) {
assign<Step>(std::forward<Property>(property));
unroll<Step+1>(choice<3>, std::forward<Other>(other)...);
}
template<std::size_t Step = 0, typename Func, typename... Other>
void unroll(choice_t<0>, Func &&invocable, Other &&... other) {
unroll<Step>(choice<3>, std::forward<Func>(invocable)(), std::forward<Other>(other)...);
}
template<std::size_t>
void unroll(choice_t<0>) {}
template<std::size_t = 0, typename Key>
void assign(Key &&key, meta_any value = {}) {
static meta_any property[2u]{};
static internal::meta_prop_node node{
nullptr,
property[0u],
property[1u]
};
entt::meta_any instance{std::forward<Key>(key)};
ENTT_ASSERT(!internal::find_if_not(&instance, *curr, &node), "Duplicate key");
property[0u] = std::move(instance);
property[1u] = std::move(value);
if(!internal::find_if(&node, *curr)) {
node.next = *curr;
*curr = &node;
}
}
public:
/**
* @brief Constructs an extended factory from a given node.
* @param target The underlying node to which to assign the properties.
*/
meta_factory(internal::meta_prop_node **target) ENTT_NOEXCEPT
: curr{target}
{}
/**
* @brief Assigns a property to the last meta object created.
*
* Both the key and the value (if any) must be at least copy constructible.
*
* @tparam PropertyOrKey Type of the property or property key.
* @tparam Value Optional type of the property value.
* @param property_or_key Property or property key.
* @param value Optional property value.
* @return A meta factory for the parent type.
*/
template<typename PropertyOrKey, typename... Value>
auto prop(PropertyOrKey &&property_or_key, Value &&... value) && {
if constexpr(sizeof...(Value) == 0) {
unroll(choice<3>, std::forward<PropertyOrKey>(property_or_key));
} else {
assign(std::forward<PropertyOrKey>(property_or_key), std::forward<Value>(value)...);
}
return meta_factory<Type, Spec..., PropertyOrKey, Value...>{curr};
}
/**
* @brief Assigns properties to the last meta object created.
*
* Both the keys and the values (if any) must be at least copy
* constructible.
*
* @tparam Property Types of the properties.
* @param property Properties to assign to the last meta object created.
* @return A meta factory for the parent type.
*/
template <typename... Property>
auto props(Property... property) && {
unroll(choice<3>, std::forward<Property>(property)...);
return meta_factory<Type, Spec..., Property...>{curr};
}
private:
internal::meta_prop_node **curr;
};
/**
* @brief Basic meta factory to be used for reflection purposes.
* @tparam Type Reflected type for which the factory was created.
*/
template<typename Type>
struct meta_factory<Type> {
/**
* @brief Makes a meta type _searchable_.
* @param id Optional unique identifier.
* @return An extended meta factory for the given type.
*/
auto type(const id_type id = type_hash<Type>::value()) {
auto * const node = internal::meta_info<Type>::resolve();
ENTT_ASSERT(!internal::find_if_not(id, *internal::meta_context::global(), node), "Duplicate identifier");
node->id = id;
if(!internal::find_if(node, *internal::meta_context::global())) {
node->next = *internal::meta_context::global();
*internal::meta_context::global() = node;
}
return meta_factory<Type, Type>{&node->prop};
}
/**
* @brief Assigns a meta base to a meta type.
*
* A reflected base class must be a real base class of the reflected type.
*
* @tparam Base Type of the base class to assign to the meta type.
* @return A meta factory for the parent type.
*/
template<typename Base>
auto base() ENTT_NOEXCEPT {
static_assert(std::is_base_of_v<Base, Type>, "Invalid base type");
auto * const type = internal::meta_info<Type>::resolve();
static internal::meta_base_node node{
type,
nullptr,
&internal::meta_info<Base>::resolve,
[](const void *instance) ENTT_NOEXCEPT -> const void * {
return static_cast<const Base *>(static_cast<const Type *>(instance));
}
};
if(!internal::find_if(&node, type->base)) {
node.next = type->base;
type->base = &node;
}
return meta_factory<Type>{};
}
/**
* @brief Assigns a meta conversion function to a meta type.
*
* Conversion functions can be either free functions or member
* functions.<br/>
* In case of free functions, they must accept a const reference to an
* instance of the parent type as an argument. In case of member functions,
* they should have no arguments at all.
*
* @tparam Candidate The actual function to use for the conversion.
* @return A meta factory for the parent type.
*/
template<auto Candidate>
std::enable_if_t<std::is_member_function_pointer_v<decltype(Candidate)>, meta_factory<Type>> conv() ENTT_NOEXCEPT {
using conv_type = std::invoke_result_t<decltype(Candidate), Type &>;
auto * const type = internal::meta_info<Type>::resolve();
static internal::meta_conv_node node{
type,
nullptr,
&internal::meta_info<conv_type>::resolve,
[](const void *instance) -> meta_any {
return (static_cast<const Type *>(instance)->*Candidate)();
}
};
if(!internal::find_if(&node, type->conv)) {
node.next = type->conv;
type->conv = &node;
}
return meta_factory<Type>{};
}
/*! @copydoc conv */
template<auto Candidate>
std::enable_if_t<!std::is_member_function_pointer_v<decltype(Candidate)>, meta_factory<Type>> conv() ENTT_NOEXCEPT {
using conv_type = std::invoke_result_t<decltype(Candidate), Type &>;
auto * const type = internal::meta_info<Type>::resolve();
static internal::meta_conv_node node{
type,
nullptr,
&internal::meta_info<conv_type>::resolve,
[](const void *instance) -> meta_any {
return Candidate(*static_cast<const Type *>(instance));
}
};
if(!internal::find_if(&node, type->conv)) {
node.next = type->conv;
type->conv = &node;
}
return meta_factory<Type>{};
}
/**
* @brief Assigns a meta conversion function to a meta type.
*
* The given type must be such that an instance of the reflected type can be
* converted to it.
*
* @tparam To Type of the conversion function to assign to the meta type.
* @return A meta factory for the parent type.
*/
template<typename To>
auto conv() ENTT_NOEXCEPT {
static_assert(std::is_convertible_v<Type, To>, "Could not convert to the required type");
auto * const type = internal::meta_info<Type>::resolve();
static internal::meta_conv_node node{
type,
nullptr,
&internal::meta_info<To>::resolve,
[](const void *instance) -> meta_any {
return static_cast<To>(*static_cast<const Type *>(instance));
}
};
if(!internal::find_if(&node, type->conv)) {
node.next = type->conv;
type->conv = &node;
}
return meta_factory<Type>{};
}
/**
* @brief Assigns a meta constructor to a meta type.
*
* Both member functions and free function can be assigned to meta types in
* the role of constructors. All that is required is that they return an
* instance of the underlying type.<br/>
* From a client's point of view, nothing changes if a constructor of a meta
* type is a built-in one or not.
*
* @tparam Candidate The actual function to use as a constructor.
* @tparam Policy Optional policy (no policy set by default).
* @return An extended meta factory for the parent type.
*/
template<auto Candidate, typename Policy = as_is_t>
auto ctor() ENTT_NOEXCEPT {
using descriptor = meta_function_helper_t<Type, decltype(Candidate)>;
static_assert(std::is_same_v<std::decay_t<typename descriptor::return_type>, Type>, "The function doesn't return an object of the required type");
auto * const type = internal::meta_info<Type>::resolve();
static internal::meta_ctor_node node{
type,
nullptr,
nullptr,
descriptor::args_type::size,
[](const typename internal::meta_ctor_node::size_type index) ENTT_NOEXCEPT {
return meta_arg(typename descriptor::args_type{}, index);
},
[](meta_any * const args) {
return meta_invoke<Type, Candidate, Policy>({}, args, std::make_index_sequence<descriptor::args_type::size>{});
}
};
if(!internal::find_if(&node, type->ctor)) {
node.next = type->ctor;
type->ctor = &node;
}
return meta_factory<Type, std::integral_constant<decltype(Candidate), Candidate>>{&node.prop};
}
/**
* @brief Assigns a meta constructor to a meta type.
*
* A meta constructor is uniquely identified by the types of its arguments
* and is such that there exists an actual constructor of the underlying
* type that can be invoked with parameters whose types are those given.
*
* @tparam Args Types of arguments to use to construct an instance.
* @return An extended meta factory for the parent type.
*/
template<typename... Args>
auto ctor() ENTT_NOEXCEPT {
using descriptor = meta_function_helper_t<Type, Type(*)(Args...)>;
auto * const type = internal::meta_info<Type>::resolve();
static internal::meta_ctor_node node{
type,
nullptr,
nullptr,
descriptor::args_type::size,
[](const typename internal::meta_ctor_node::size_type index) ENTT_NOEXCEPT {
return meta_arg(typename descriptor::args_type{}, index);
},
[](meta_any * const args) {
return meta_construct<Type, Args...>(args, std::make_index_sequence<descriptor::args_type::size>{});
}
};
if(!internal::find_if(&node, type->ctor)) {
node.next = type->ctor;
type->ctor = &node;
}
return meta_factory<Type, Type(Args...)>{&node.prop};
}
/**
* @brief Assigns a meta destructor to a meta type.
*
* Free functions can be assigned to meta types in the role of destructors.
* The signature of the function should identical to the following:
*
* @code{.cpp}
* void(Type &);
* @endcode
*
* The purpose is to give users the ability to free up resources that
* require special treatment before an object is actually destroyed.
*
* @tparam Func The actual function to use as a destructor.
* @return A meta factory for the parent type.
*/
template<auto Func>
auto dtor() ENTT_NOEXCEPT {
static_assert(std::is_invocable_v<decltype(Func), Type &>, "The function doesn't accept an object of the type provided");
auto * const type = internal::meta_info<Type>::resolve();
type->dtor = [](void *instance) {
Func(*static_cast<Type *>(instance));
};
return meta_factory<Type>{};
}
/**
* @brief Assigns a meta data to a meta type.
*
* Both data members and static and global variables, as well as constants
* of any kind, can be assigned to a meta type.<br/>
* From a client's point of view, all the variables associated with the
* reflected object will appear as if they were part of the type itself.
*
* @tparam Data The actual variable to attach to the meta type.
* @tparam Policy Optional policy (no policy set by default).
* @param id Unique identifier.
* @return An extended meta factory for the parent type.
*/
template<auto Data, typename Policy = as_is_t>
auto data(const id_type id) ENTT_NOEXCEPT {
if constexpr(std::is_member_object_pointer_v<decltype(Data)>) {
return data<Data, Data, Policy>(id);
} else {
using data_type = std::remove_pointer_t<decltype(Data)>;
auto * const type = internal::meta_info<Type>::resolve();
static internal::meta_data_node node{
{},
type,
nullptr,
nullptr,
std::is_same_v<Type, data_type> || std::is_const_v<data_type>,
true,
&internal::meta_info<data_type>::resolve,
&meta_setter<Type, Data>,
&meta_getter<Type, Data, Policy>
};
ENTT_ASSERT(!internal::find_if_not(id, type->data, &node), "Duplicate identifier");
node.id = id;
if(!internal::find_if(&node, type->data)) {
node.next = type->data;
type->data = &node;
}
return meta_factory<Type, std::integral_constant<decltype(Data), Data>>{&node.prop};
}
}
/**
* @brief Assigns a meta data to a meta type by means of its setter and
* getter.
*
* Setters and getters can be either free functions, member functions or a
* mix of them.<br/>
* In case of free functions, setters and getters must accept a reference to
* an instance of the parent type as their first argument. A setter has then
* an extra argument of a type convertible to that of the parameter to
* set.<br/>
* In case of member functions, getters have no arguments at all, while
* setters has an argument of a type convertible to that of the parameter to
* set.
*
* @tparam Setter The actual function to use as a setter.
* @tparam Getter The actual function to use as a getter.
* @tparam Policy Optional policy (no policy set by default).
* @param id Unique identifier.
* @return An extended meta factory for the parent type.
*/
template<auto Setter, auto Getter, typename Policy = as_is_t>
auto data(const id_type id) ENTT_NOEXCEPT {
using underlying_type = std::remove_reference_t<std::invoke_result_t<decltype(Getter), Type &>>;
auto * const type = internal::meta_info<Type>::resolve();
static internal::meta_data_node node{
{},
type,
nullptr,
nullptr,
std::is_same_v<decltype(Setter), std::nullptr_t> || (std::is_member_object_pointer_v<decltype(Setter)> && std::is_const_v<underlying_type>),
false,
&internal::meta_info<underlying_type>::resolve,
&meta_setter<Type, Setter>,
&meta_getter<Type, Getter, Policy>
};
ENTT_ASSERT(!internal::find_if_not(id, type->data, &node), "Duplicate identifier");
node.id = id;
if(!internal::find_if(&node, type->data)) {
node.next = type->data;
type->data = &node;
}
return meta_factory<Type, std::integral_constant<decltype(Setter), Setter>, std::integral_constant<decltype(Getter), Getter>>{&node.prop};
}
/**
* @brief Assigns a meta funcion to a meta type.
*
* Both member functions and free functions can be assigned to a meta
* type.<br/>
* From a client's point of view, all the functions associated with the
* reflected object will appear as if they were part of the type itself.
*
* @tparam Candidate The actual function to attach to the meta type.
* @tparam Policy Optional policy (no policy set by default).
* @param id Unique identifier.
* @return An extended meta factory for the parent type.
*/
template<auto Candidate, typename Policy = as_is_t>
auto func(const id_type id) ENTT_NOEXCEPT {
using descriptor = meta_function_helper_t<Type, decltype(Candidate)>;
auto * const type = internal::meta_info<Type>::resolve();
static internal::meta_func_node node{
{},
type,
nullptr,
nullptr,
descriptor::args_type::size,
descriptor::is_const,
descriptor::is_static,
&internal::meta_info<std::conditional_t<std::is_same_v<Policy, as_void_t>, void, typename descriptor::return_type>>::resolve,
[](const typename internal::meta_func_node::size_type index) ENTT_NOEXCEPT {
return meta_arg(typename descriptor::args_type{}, index);
},
[](meta_handle instance, meta_any *args) {
return meta_invoke<Type, Candidate, Policy>(std::move(instance), args, std::make_index_sequence<descriptor::args_type::size>{});
}
};
for(auto *it = &type->func; *it; it = &(*it)->next) {
if(*it == &node) {
*it = node.next;
break;
}
}
internal::meta_func_node **it = &type->func;
for(; *it && (*it)->id != id; it = &(*it)->next);
for(; *it && (*it)->id == id && (*it)->arity < node.arity; it = &(*it)->next);
node.id = id;
node.next = *it;
*it = &node;
return meta_factory<Type, std::integral_constant<decltype(Candidate), Candidate>>{&node.prop};
}
};
/**
* @brief Utility function to use for reflection.
*
* This is the point from which everything starts.<br/>
* By invoking this function with a type that is not yet reflected, a meta type
* is created to which it will be possible to attach meta objects through a
* dedicated factory.
*
* @tparam Type Type to reflect.
* @return A meta factory for the given type.
*/
template<typename Type>
[[nodiscard]] auto meta() ENTT_NOEXCEPT {
auto * const node = internal::meta_info<Type>::resolve();
// extended meta factory to allow assigning properties to opaque meta types
return meta_factory<Type, Type>{&node->prop};
}
}
#endif